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Abstract. This note reports some results of a new theory of multidimensional complex 
variables including, in particular, analytic functions of a three-dimensional (3-D) complex 
variable. Three-dimensional complex numbers are  defined, including vector properties and 
rules of multiplication. The  necessary conditions for a function of a 3-D variable to  be 
analytic are given and shown to be analogous to the 2-D Cauchy-Riemann equations. A 
simple example also demonstrates the analogy between the newly defined 3-D complex 
velocity and 3-D complex potential and the corresponding ordinary complex velocity and 
complex potential in two dimensions. 

1. Introduction. Early in the nineteenth century, mathematicians began a search for 
a “three-dimensional complex number and its algebra” tha t  would be a generalization of 
the ordinary “two-dimensional” complex number [l, p. 901. In 1843, William R. Hamilton 
introduced quaternions (see [l]), an important four-dimensional generalization of complex 
numbers and variables. Hypercomplex anal-vsis has developed mainly as a further gener- 
alization of quaternions and,  as such, is often referred to as Clifford analysis. The  recent 
papers [2], [3], [4], [5] supply many references, including early work by Fueter (e .g . ,  [6]). 
These algebras tha t  generalize quaternions are  noncommutative. 

S. Bergman [7] has introduced a method based on E. T. Whittaker’s ( 8 ,  p.  3901 general 
integral solution to Laplace’s equation tha t  provides a certain generalization of analytic 
functions of one complex variable. However, the present s ta te  has been summarized as 
follows by E. T .  Copson 19, p. 2071: “The theory of harmonic functions in two dimensions 
can be made to depend on the theory of analytic functions of a complex variable, x + i y .  
There is nothing corresponding to the theory of functions of a complex variable x t i y  in 
three dimensions. The nearest approach is given by Whittaker’s general solution . . . of 
Laplace’s equation.” 

The elements of t h e  3-D theory (a commutative algebra) to be described here are direct 
generalizations of corresponding elements of the classical 2-D theory. Therefore a direct 
Comparison with 2-D is helpful for this description. 

2. Basics in Two Dimensions for Comparison. A most important property of 
analytic functions of a n  ordinary complex variable is tha t  from them are  obtained vector 
functions g t ha t  are  both solenoidal and irrotational. As a result, the  components of g are  
harmonic functions. 

Let R denote the set, of all real numbers and C2 denote the  set of all ordinary complex 
numbers. The  complex variable t = x t i y  in C2 may be written also as z = (z, y) = 
(1,O)zS (0 ,  l ) y ,  which may be interpreted as a vector in R’ with real components sly and 
with basis vectors ( 1 , O )  = 1 and (0 , l )  = i, whose rules ofmultiplication are: l 2  = 1 ,  l i  = 
i l  = i, i’ = - 1 .  However, the unit ( 1 , O )  = 1 as a factor is commonly omitted. If now 
g = $1 +i42, in C2, is defined t o  be the vector (complex function) whose complex conjugate 
is an analytic function g = f ( z )  = dl - i42, then the conditions of analyticity for g = f ( z )  
are the Cauchy-Riemann equations: div g = $ I x  + $zy = 0 and curl g = $ 2 x  - q!qy = 0. 
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(In two dimensions the result of the curl operation is defined as a scalar.) Therefore, g is 
solenoidal and irrotational (Sand I ) .  

Any 2-D S and I vector may be represented by a complex variable having the same 
form as g.  For example, in 2-D ideal flow with velocity components u1 and u2 and with 
velocity potential 4 and stream function $, the  velocity vector u = u1 + iu2  and the vector 
g = 41 i i42 (where 41 =- 4 and 4 2  =T --4) are called, respectively, the complex velocity 
and the complex potential. Both 11 and g are Sand  I vectors, and their respective complex 
conjugates v -- ~ ( t )  = 111 - i t 1 2  and g = f ( z )  I: 4, - i+2 may be represented by analytic 
functions for which w = d f / d z .  

3. Definitions and Results in Three Dimensions. 

DEFINITION 1 .  Let C3 denote the set of all “three-dimensional (3-D) numbers” of the 
(i) 2 may be interpreted as a vector with basis vectors 

( i i )  the rules of multiplication are as 
form Z 1: 1 x  + 6y + cz, in which 
1 ,  5 ,  c and with components x, y, z in C,; and 
follows (or other equivalent forms of them): 

1 2 = : 1 ,  1 6 = 6 1 = 6 ,  l c = c l  = f ,  

b 2  = ~ ; ( I  + ic), c 2  = - 1 ( ~  - i c ) ,  S E  = e6 - 1 . ‘L 
1 

The 3-D unit 1 as a factor may be omitted (as the factor 1 in 2-D is omitted), with 2 
written generally as 

where Z H  = X R  + SYR + C Z R  arid 21 = 11 + 6y1 t ( 2 1 ,  with ZR, YR, ZR, XI, y ~ ,  ZI real. 

2 1- P +  6 y +  r z  =. ZR +iZI ,  

DEFINITION 2 .  Let Ck be a subset of C:< such that ,  for every element 2 = 2 + 6y c z  
in Ck, the components x, y,  2 are real. 

Then, for Z in C S ,  Z R  and 2, are in Ck, and the basis vectors 1, 6, and c are in Cg. If 
Z is an independent variable, for which values be prescribed, then one can set 21 = 0 ,  
so tha t  x, y and z are real and 2 is in C;. 

The algebraic properties of these numbers i n  C3 are developed and discussed in papers 
by the author to be published. The rnultiplicative inverse, Zpl, is of special significance. It 
can be found by setting 2-’ = a1 t 6a2 i- ta3, where uk i CZ, and by requiring 2 Z - l  = 1 .  
I t  is found tha t  there are certain nonzero values of Z for which Z -  is not defined, with 
results including the following: 

THEOREM 3 .  For Z = x 6y t- r t  in C;, the domain of definition of 2-’ inclrides all 
of the R3 space of (z, y,  z )  except, the origin and any of tbe six rays in the plane z = 0 
where O - tai i-’(t /y) - ( E -  1 ) q ’ 3  for E ~ 1 ,  2,  . . . , 6 .  

R E M A R K  4 .  The algebra of C 3  is a linear algebra of order 3 over the field of ordinary 
complex numbers, C2. Further, Ca is a commritative ring with unity, and not a field, since, 
for some nonzero elements Z,  the inverse 2.- is not defined. 

Further discussion of Z -  

DEFINITION 5.  For every i: -~ x + G y + ~ z  in C3,  denote as the bijugate o f 2  the element 

is beyond the scope of this note, but is included elsewhere. 

1 
- 

of C3 given by Z = T x  - 6y ~ c z .  

(The bijugate can be defined more generally.) The  3-D bijugate is in 
to the 2-D conjugate. The  similar role in regard to  analytic functions 
here. 

some ways analogous 
will be demonstrated 
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As an analogy t o  the variables z and g in Cz described in the previous section, consider 
the two variables in C3: 2 = 2 + 6 y  + ez and G = 41 + 642 + 6 4 3 ,  which are also vectors 
in G3. Now let G be defined to be the vector (3-D complex function) whose bijugate is an  
analytic function E = F(2) = i41 - 642 - E&. The  concepts of function, limit, derivative, 
and analytic function can be extended, with some care, to the set C3, Then,  in analogy to 
the Cauchy-Riemann conditions in two dimensions, the following necessary conditions for 
t,he differentiability, and hence analyticity, of F ( 2 )  are  found: 

such that  G = F ( Z ) ,  the necessary conditions for analyticity of F(2) are: 
THEOREM 6. For 2 in some domain DJ C CJ, and G' in C3 with Components 4 k  in Cz 

d i v G  $12 t 4 2 y  + 4 3 2  = 0, 

curlG = 1 ( 4 3 y  - 4 2 2 )  + S ( 4 l Z  - 43z) + 4 4 2 2  - 4 l y )  = 0 ,  

along with 

Since all the  components of the curl must vanish, G is an Sand  I vector in three dimensions. 
Further, if we write 4 k  = 4 k R  + i 4 k l  and G = GR + iGI,  with the components 4 k R  of G R  
and components 4 k l  of G I  real, then G R  and G I  are also Sand 1 vectors (with the final two 
equations in Theorem 6 serving to connect the components 4 k R  of G'R to the components 
4 k l  of G I ) .  In Theorem 6, 5 ,  y, and z are  independent variables defined generally to be 
complex, but as independent variables, may be taken t o  be real (;.e., 2 E Ck). 

COROLLARY 7 .  If W = 'u1 +Svz  t  ED^, in C3, is defined to be the vector whose bijugate is 
the analytic function that  is the derivative of F ( 2 ) :  w = V ( 2 )  1 d F / d Z  = f v l  - Sv2 ~ cv3 ,  

then W is also an Sand I vector and  

- i(& + 43y) = 0 and 412 -~ i(& - 4 3 + )  = 0. 

v1 = 412 = -(4'Y + q&), 

v 2  = 4 1 y  = 4 2 2  = i(4h + 43Y), 
213 = 412 = 432 = i ( h Y  - @ S z ) ,  

4 3 Y  = 4 2 2 ,  

EXAMPLE 8 .  For 2 in C$ the  product 2' = 2 2, with use of the rules of multiplication 
from Definition 1, is Zz = x' - i(y2 + z 2 )  + 6(22y) + ~ ( 2 2 2 )  . -  i6(yt) -- z c i ( y 2  ~ 2'). Then 
for F ( Z )  = Z 2 ,  the results are + 1 ~  = 2x2 - (y' + t'), 4 2 ~  = -22y, 4 3 ~  = - 2 ~ 2 ,  411 = 
0 ,  $ 2 1  = yz, 421 = $(y' - -  z 2 ) ,  which are readily seen to satisfy Theorem 6. The  two Sand 1 
vectors GR and G I ,  with respective Cartesian components 4 k R  and @k], are  t h u s  generated 
by F ( 2 )  = 2'. 

The (harmonic) components of either GR or G I  can be related to a 3-D velocity potential 
and general 3-D stream functions, and either G R  or GI can be taken to be a "3-D complex 
potential," with the corresponding "3-D complex velocity" then being either WR or W I .  

A primary result here is tha t  this theoretical structure can be used to generate Sand I vec- 
tors and harmonic functions in three dimensions, as can the Whittaker-Bergman method, 
but without integration here, as in ordinary analytic-function theory for two dimensions. 

Details, proofs, and further results are in [lo]. 
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